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INTRODUCTION

The recent development of laser noninvasive diag-
nostics in biology and medicine [1] has rekindled inter-
est in the theoretical description of optical radiation
propagation through turbid scattering materials and
media. First of all, this is connected with the need to
develop high-level algorithms for the processing of
diagnostic data based on the solution of inverse prob-
lems of optics of light-scattering media [2]. The classi-
cal theory of radiative transfer in randomly inhomoge-
neous media [3], which is the most widely used today
and is practically the only existing analytical method,
does not always prove to be efficient in practice. For
example, multidimensional spatial scattering problems
and problems involving the calculation of the radiation
field in close-packed media with pronounced scattering
anisotropy present serious difficulties in classical radi-
ative transfer theory (RTT) [4]. In connection with this,
the development of new algorithms and methods for
solving such problems is quite urgent. 

The possibility of developing new analytical
approaches to solving multidimensional problems of
radiation propagation in the mass of a medium on the
basis of Kubelka–Munk flow models has been demon-
strated recently [5]. To set the boundary values of the
flows, these models should use some function of the
radiation intensity distribution at the interface between
media, and a procedure for determining this function in
the general case is not yet known. At present, the over-
whelming majority of existing models in RTT employ
local conditions of a plane interface. The boundary val-

ues of the radiation intensity in them are determined on
the basis of the known Fresnel equations for an infinite
plane medium–air interface. For the diffusion approxi-
mation, the zero flow of the diffusion component of
radiation near the medium boundary is additionally
specified [3]. Sometimes, more complex approximat-
ing equations are used for the reflection coefficient or
some effective (conditional) interface between the two
media is introduced [6].

Meanwhile, it is obvious that the surface of most
real light-scattering materials and media, in particular,
biological ones, is not planar, but rather loose (uneven)
and randomly rough with the size of roughness, espe-
cially in the case of biological tissues, greater than the
wavelength of the incident radiation. Intuitively, it is
clear that the spatial parameters of the light beam upon
its interaction with such a rough interface undergo cer-
tain changes as compared to the situation of radiation
incidence on a smooth surface. Most likely, the beam
penetrating into the medium will additionally broaden
due to the surface roughness, and this initial broadening
will affect, in some way, the general solution of the
problem of radiation propagation inside the medium.
However, classical RTT gives no answer to the ques-
tion: How do the spatial parameters of the beam change
as it crosses an uneven interface? 

The neglect of rough boundaries in RTT seems
rather surprising, especially in view of the fact that, in
parallel with RTT, there are well-known diffraction
methods of electrodynamics, which, in principle, allow
such problems to be solved. These methods, developed
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initially for radar [7], have been repeatedly applied to
problems of optics and photometry, for example, for
explanation of the observed optical properties of con-
struction materials [8]. Unfortunately, for many rea-
sons, they still have not found a proper application to
RTT problems. Thus, because these methods are radio-
physical in origin, many solutions given by them are
formulated in terms of electrodynamics rather than
photometry. This complicates their direct application to
RTT problems. As a consequence, for example, the
scattering indicatrix in [9] has to be treated as the rela-
tive angular distribution of the radiation intensity with
respect to the amplitude of the specular maximum,
while, by photometric definition, the indicatrix must
also bear absolute information about the radiation
intensity in any considered direction [10]. In addition,
because of certain mathematical difficulties, illustrative
analytical solutions in the theory of diffraction of elec-
tromagnetic waves on randomly rough surfaces could
be obtained until recently only for ideally conducting or
well-conducting (metal) surfaces (the so-called Leon-
tovich boundary conditions [11]), whose application in
optics and photometry is quite limited at first sight. The
relatively recent paper [12] has opened ways to the
search for analytical solutions for dielectric surfaces
and media, including most biological tissues, which, in
the optical region, are dielectrics. The use of laser radi-
ation in modern photometry and medicine has elimi-
nated the last distinction between the computational
methods of radar and optics in terms of coherence and
other wave properties of the initial (incident) radiation. 

Thus, there are now certain prerequisites for invok-
ing the diffraction methods of electrodynamics to solve
computational boundary problems of RTT. In particu-
lar, the following questions are considered: How does
the rough surface of biological tissues scatter radiation
as applied to computational RTT problems, and is it
possible to describe (estimate) this scattering within the
framework of the classical theory of diffraction of elec-
tromagnetic waves by randomly rough surfaces? 

BASIC THEORY FOR IDEAL CONDUCTOR

It is convenient to begin the study of this problem by
considering the simplest classical problem of diffrac-
tion of electromagnetic radiation by the surface of a
rough ideal conductor. This allows us to obtain the
basic reference solutions, which can then be further
extended, and to analyze them for application to pho-
tometry. 

In the general case, the overwhelming majority of
problems in the modern theory of wave scattering on
randomly rough surfaces are based on solution of the
Green’s integral vector equations, which are also

known as the Stratton–Chu vector equations in diffrac-
tion problems of electrodynamics [13],
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Equations (1) are valid for any point of space with
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. Their exact values, in turn, can be found only
through solution of additional integral equations,
which, in the general case, is a rather difficult problem
for arbitrary surfaces and media. Therefore, the tangen-
tial components are determined using various approxi-
mate methods. One of the simplest methods employs
the boundary conditions of an ideal conductor 
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and the well-known Kirchhoff approximation:
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. In this case, the system (1)
becomes much simpler, and for the field scattered by
the surface of an ideal conductor, it is sufficient to con-
sider the integral equation

Its solution can be found in the closed form. It is
only necessary to describe the rough surface itself and
to choose the general geometry of the problem in the
appropriate coordinate system. The general geometry
of our problem is shown in the figure. To describe the
randomly rough surface, from the viewpoint of obtain-
ing the final analytical solution, it is most convenient to
consider the roughness heights as a randomly Gaussian,
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mean (〈ξ (x, y)〉  = 0), variance 〈ξ 2(x, y)〉 = h2, and Gaus-
sian correlation function 

where τ2 = x2 + y2 is the distance between the points
considered and T is the correlation length.

Clearly, real roughness of both metal and dielectric
surfaces can differ from this idealized model. However,
as was shown in [14], the use of other correlation func-
tions in the calculations only slightly affects the final
result, at least for the field scattered into the outer half-
space. However, this strongly complicates the proce-
dure of derivation of the final analytical equations.
Therefore, the concept of Gaussian roughness is, in our
opinion, the most convenient for performing tentative
calculations. Then we can change the parameters of the
random field and estimate the differences in the results.
It should be noted, however, that, in [15], on the basis
of analysis of a large number of real rough surfaces, it
was shown that a Gaussian random field fairly ade-
quately describes the majority of such surfaces. 

In our computational scheme, it is convenient to rep-
resent the surface as a square plate with side length L,
illuminated by a unit unbounded linearly polarized
plane electromagnetic wave incident at the angle ϕ to
the normal 

where h is the unit basis vector of the plane of polariza-
tion of the incident wave.

The direction of scattering into the outer half-space
will be characterized by the vector w. Assume that the
central plane of the plate coincides with the coordinate
plane XOY and consider the solution of the problem for
the field scattered into the outer half-space [9]. The
solution is constructed for the far zone of the radiation
in the form 

(4)

where q = k – kω and R is the distance from the origin
of coordinates to the observation point.

Then, using the Isakovich–Beckman formalism [9,
16], neglecting the boundary effects, averaging the
scattered field over the ensemble of random surfaces,
and summing the mean intensity of the coherent and
incoherent parts of the scattered field, we can obtain the
general solution of the problem in the form of an equa-
tion for the mean radiophysical intensity of the scat-

C τ( ) ξ x y,( )ξ 0 0,( )〈 〉
ξ2

x y,( )〈 〉
--------------------------------------- e

τ2
/T

2
–

,= =

Hi r( ) he
i k r,( )

, k k,= =

HS r( ) ik
2π
------e

ikR

R
-------- w n' h×[ ] e

i q r',( )
S ',d×

S

∫=

tered field in the far zone normalized to the intensity of
the initial incident wave [17],

(5)

where qx , qy , and qz are the components of the vector q;

qxy = , S = L2, g = h2 , and λ = 2π/k is the
wavelength. 

For the optical wavelength region and for applica-
tions of this solution to problems of photometry and
RTT, it should be reformulated in optical and photomet-
ric terms. The fundamental photometric term is the
light strength or intensity Ieλ [18], which is the angular
distribution of the light flux Feλ from a point source [19]
in some solid angle:1 
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where dΩ is the element of the solid angle. 
However, in photometric practice, relative, rather

than absolute, measurements of the radiative fluxes are
used in most cases, because this significantly simplifies
the problem. For this purpose, the concept of the scat-
tering (reflection) indicatrix is introduced. For identical
illumination conditions, the indicatrix characterizes, in
relative units, the angular distribution of the intensity of
the scattered or reflected radiation with respect to some
known easily modeled reference field [10]. Thus, to
describe the volume scattering, as the normalizing ref-

1 Hereinafter, for brevity and clarity, the subscripts of the photo-
metric energy e and the wavelength λ are omitted.

H1 ϕ θ ψ, ,( ) = HS r( )
Hi r'( )
--------------

2

 = 
1

R
2

------ S

λ 2
-----e

g– w q h×[ ]× 2 1

qz
2

-----

× S
qxL/2sin

qxL/2
--------------------- 

 
2 qyL/2sin

qyL/2
--------------------- 

 
2

∫



+ πT
2 g

m

m!m
-----------e

qxy
2

T
2
/4m–

m 1=

∞

∑ 



,

qx
2

qy
2

+ qz
2

Ieλ dFeλ /dΩ,=

w

Z k
ϕ

ψ
θ

–L/2

+ L/2 Y

X

+ L/2

– L/2

General geometry of the problem (see explanations in the
text).



458

OPTICS AND SPECTROSCOPY      Vol. 97      No. 3      2004

ROGATKIN

erence field, photometry employs the field scattered
from an ideal diffuse scatterer. This scatterer scatters
the incident radiation uniformly over all directions with
the mean spherical intensity F0/4π, where F0 is the inci-
dent flux [19]. By definition, the scattering indicatrix
for an ideal scatterer is independent of the scattering
angle and equal to a constant (unity). For description of
the processes of surface reflection, photometry usually
uses, as a reference, the so-called Lambertian surface
illuminated normally (ϕ = 0). This surface forms the
reflected field according to the Lambert law [10]

where I0 depends on the incident flux F0, and, in the
general case of loss-free reflection, it is equal to [20]

(7)

This parameter, i.e., the amplitude of the radiation
intensity formed by the Lambertian surface in the direc-
tion normal to the surface under the illumination condi-
tions presented above, is used as the normalizing inten-
sity when determining the reflection indicatrix. Thus,
the reflection indicatrix of any unknown reflector,
ρr(ϕ, θ, ψ), is characterized by the equation [17]

(8)

where Iref(ϕ, θ, ψ) is the experimentally recorded
reflected intensity.

The indicatrix of the Lambertian surface is equal to
cosθ. At the same time, in electrodynamics, the radia-
tion flux dF through an area element on the surface of a
sphere, formed by an elementary source S located at the
center of the sphere, is described by the well-known
equation [11]

(9)

where We is the wave resistance of the medium and dA
is the elementary area of the sphere’s surface. 

Since Eq. (5) is obtained for the far zone of the radi-
ation, the scattering surface S in this problem can be
considered as a point source. Then, comparing Eqs. (6)
and (9) and using the equation for the solid angle2 

(10)

where R is the radius of the sphere corresponding to the
distance to the receiver (Ω0 = 1 sr), we can easily obtain
an equation relating the photometric and radiophysical
radiation intensities,
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2 See Appendix 1.

I ϕ  = 0 θ ψ, ,( ) I0 θ,cos=

I0 F0/π.=

ρr ϕ θ ψ, ,( ) Iref ϕ θ ψ, ,( )/I0=

=  Iref ϕ θ ψ, ,( )π/F0,

dF
1
2
---We H r( ) 2

dA,=

dΩ dA

R
2

-------Ω0,=

Iref ϕ θ ψ, ,( ) We H r( ) 2
R

2
/2Ω0.=

This equation allows us to express the reflection indic-
atrix through the corresponding radiophysical field
strengths. Since the flux F0 incident on the surface S is
determined by the equation 

using Eqs. (5), (8), (11) and omitting Ω0 = 1 sr, we can
easily find3 [16]

(12)

To check the validity of expression (12), we can try
to model the Lambertian reflector by an ideally con-
ducting rough plate. This modeling is quite justified,
because in electrodynamics both the Lambertian refer-
ence (by definition) and the ideally conducting plate
fully reflect (scatter) the incident radiation (owing to
their electromagnetic properties). Moreover, this mod-
eling is especially interesting because the Lambert law
is still considered as one of the least theoretically justi-
fied laws in modern physics [22]. 

For modeling, consider the structure of solution (5).
It consists of two terms, one of which is nonlinear with
respect to S and λ and responsible for coherent scatter-
ing at low roughness. Another term, in contrast, is lin-
ear with respect to S and characterizes the incoherent
random scattering at high roughness. It is clear a priori
that, to obtain more or less isotropic scattering, as is
required in the case of Lambert reflection, the rough-
ness should be coarse enough. This leads to the condi-
tion g � 1 and the possibility to calculate the sum in
Eq. (5) by the saddle point method [23]. Neglecting the
first term, which is much smaller at g � 1, and using
Eq. (12) and the explicit equations for the components
of the vectors w, q, and h determined by the general
geometry of the problem, we can obtain the following
equation for the reflection indicatrix of a normally illu-
minated ideally conducting plate with coarse rough-
ness:
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As an example, Table 1 illustrates the model indica-
trices calculated by Eq. (13) for different T/h in com-
parison with the Lambertian indicatrix (cosθ). It can
easily be seen that the Lambertian reflection is achieved
almost ideally at T/h = 4. An increase in T/h changes the
character of the reflected field, making it more specular.
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The slight difference of the indicatrix with T/h = 4 from
cosθ for large viewing angles can be explained by the
neglect of radiation shading and re-reflection on the
surface in this formulation of the problem, whereas
these factors are obviously present in the case of coarse
roughness. Thus, the diffraction approach can be quite
efficient in photometric problems; in particular, it
allows an adequate description of such a model phe-
nomenon as the Lambertian character of reflection.

MEDIA WITH FINITE CONDUCTANCE

Now we can pass on to the more general case of
media with finite conductance. For these media, the ini-
tial integral equations (1) are to be solved. Thus, for the
strength of the scattered magnetic field, we have to
solve the equation 

(14)

This can be done most easily for the case of a medium
with a high conductance, when the Leontovich imped-
ance boundary conditions can be formulated on the
rough surface of a plate [24],

(15)

These conditions reflect the fact that the tangential
components of the field on the surface of a good con-
ductor are continuously transformed into the transverse
components of the field of the wave propagating deep

into the conductor [11]. At   0, condition (15),
as could be expected, transforms into the condition of
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an ideal conductor. In the case of the Kirchhoff approx-
imation, for example, for the vertical polarization of the
incident radiation, the tangential components of the
fields on S can be expressed from condition (15) as fol-
lows:
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where ϕ is the local angle of incidence, and Hi and Ei

are the vectors of the field of the incident wave.
Further simplification of the solution of Eq. (14) can

be connected with the replacement of the coefficients
depending on the local angle of incidence in Eq. (16) by
their average values. Substituting these averages into
Eq. (14), we can obtain a solution analogous to solution
(5) for an ideal conductor, except for the modified fac-
tor |w × q × h|2. For example, for unpolarized light,
Eq. (5) will include the sum 
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in place of the vector product. In Eq. (17), the sub-
scripts 1 and 2 denote the vertical and the horizontal
polarization, e is the unit vector of the electric field
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Table 1.  Reflection indicatrix calculated by Eq. (13) for ideally conducting randomly rough surfaces at different observation
angles θ and different T/h in comparison with the Lambertian indicatrix

θ, deg
Reflection indicatrix calculated by Eq. (13) for different parameters of surface roughness Lambertian

indicatrix (cosθ)T/h = 2 T/h = 4 T/h = 6 T/h = 8

0 0.2500 1.0000 2.2500 4.0000 1

10 0.2519 0.9848 2.1325 3.5933 0.9848

20 0.2577 0.9388 1.8082 2.5859 0.9397

30 0.2673 0.8620 1.3545 1.4568 0.8660

40 0.2808 0.7550 0.8759 0.6160 0.7660

50 0.2981 0.6211 0.4712 0.1828 0.6428

60 0.3185 0.4686 0.1991 0.0343 0.5000

70 0.3401 0.3125 0.0606 0.0035 0.3420

80 0.3590 0.1737 0.0116 0.0001 0.1736

90 0.3679 0.0733 0.0011 0.0000 0
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strength, and ϕ is the nonlocal angle of incidence. As
for the rest, the form of solution (5) and, correspond-
ingly, all of its statistical properties remain unchanged.
It is interesting to note that, for the case of normal illu-
mination of the surface, the polarization of the radiation
is unimportant, and the sum (17) can be significantly
simplified and expressed in explicit form. At µ = 1 and
with the use of the complex refractive index of the
medium (N = n + iχ), it takes the form 

(18)

Thus, the equation for the reflection indicatrix in the
case of a well-conducting and very rough surface is
completely identical to Eq. (13), except for an extra fac-
tor—the Fresnel reflection coefficient. The angular
characteristics of the scattered field remain unchanged,
because in Eq. (5) at normal light incidence the vector
product |w × q × h|2 for an ideal conductor has the form
(1 + cosθ)2. 

Biological tissues and media are, certainly, not
media with high conductance in the optical wavelength
region. Typical values of the real and imaginary parts of
the complex refractive index for them can be found in
numerous publications (see [1] and references therein).
They have the following orders of magnitude:

n ≈ 1.1–1.6 and χ ≈ 10–10–10–4,

that is, biological tissues are good dielectrics, for which
the conductance of the medium can be, generally
speaking, neglected in diffraction calculations. Corre-
spondingly, they could be considered as a particular
case of media with high conductance if conditions (15)
and (16) can be met for them. 

The applicability of the impedance boundary condi-
tions to dielectric media is discussed in [12], and it is
concluded that they are valid not only for media with
high conductance but also for ideal dielectrics with a
high real part of the refractive index. In this case, the
angle of refraction of radiation at the medium–air inter-
face can be considered as real and zero, which leads to
conditions (15) and (16). In addition, as was shown in
[12], for dielectrics, the errors in applying the imped-
ance boundary conditions mostly affect the amplitude
of the scattered field rather than the angular distribution
of its intensity. The angular broadening of the radiation
for such dielectrics, which is of primary interest to us,
is adequately described by integral equations even
under such oversimplified assumptions as Eq. (15).
Moreover, Maradudin and Mendes [12] evidently did
not notice that, at normal (ϕ = 0) illumination of the
dielectric surface, the nonlocal angle of refraction of
radiation at the interface is also real and nonzero, and
the wave penetrating into the medium is homogeneous
and transverse, so that conditions (15) and (16) remain
effective in this case as well. Therefore, the solutions
obtained above for conductors can also be used for esti-

1 θcos+( )2
n 1–( )2 χ2

+[ ]
n 1+( )2 χ2

+
----------------------------------------------------------------.

mating the scattering from dielectric media and biolog-
ical tissues if the condition ϕ = 0 is satisfied (the case
used most often in practice). Thus, according to
Eqs. (13) and (18), biological tissues under normal illu-
mination of their surface are characterized by a low sur-
face reflection of the radiation (at a level of a few per-
cent) and a wide reflection indicatrix (such as the Lam-
bertian one), which is pointed out in most papers
reporting the corresponding experimental data (clearly,
only the purely boundary effects are meant).

To obtain the solution for the radiation propagating
deep into the medium and derive the equation for its
indicatrix, it is necessary to direct the radiation propa-
gation vector w inside the medium (plate) in the exist-
ing computational scheme. It should also be taken into
account that the medium of radiation propagation under
the surface has a refractive index different from 1. As
for the rest, the procedure for obtaining the solution is
quite routine and similar to those described above. The
angular scattering at high roughness for radiation pen-
etrating into the medium is also described by the second
term in Eq. (5), but with modified components of the
vectors q and k, and the vector product (17) transforms
into the Fresnel transmission coefficient. This simple
reasoning allows us to obtain an evaluative equation for
the indicatrix of the radiation passing deep into a
dielectric biological tissue based only on the available
solutions (13) and (18) (without routine derivation), 

(19)

where ρτ is the transmission indicatrix and n is the real
part of the refractive index of the medium.

Some doubts may arise about the fulfillment of the
conditions of the far reception zone just above the sur-
face and, correspondingly, the applicability of the con-
cept of an indicatrix in this case. These doubts can be
removed by a more detailed consideration of the proce-
dures of integration of the equations when finding the
statistical parameters of the scattered fields [16], as
well as the issue concerning the position of the far zone
in the presence of coarse roughness of the surface [25].
As was indicated in [16], in integration of the basic
equations over the surface in order to find the incoher-
ent component of the scattered field, the important
domain of integration lies within the correlation length
T. It is this domain that is the so-called dominant area
[11] in formation of the diffracted field from the
coarsely rough surface. The radiation coming from far
elements of the surface is insignificant at the point of
reception as compared to the radiation “distributed”
within T. The distance to the far zone decreases drasti-
cally with the appearance of surface roughness. For
coarsely rough surfaces, it does not exceed a few wave-
lengths [25], which is also comparable with T in the
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Kirchhoff approximation. Thus, as the radiation passes
through the coarsely rough interface, the field is formed
within the range of a few T, and all the above equations
remain valid for analysis of purely surface effects
(neglecting radiation scattering and absorption in the
mass of the medium, which are subjects of RTT). 

In Table 2, the degree of the beam broadening upon
passage through a randomly rough surface of a dielec-
tric medium is illustrated as a function of the angle θ
and the parameters n, T, and h. This table summarizes
the values of the indicatrix calculated by Eq. (19) for
the set of absolute values of the parameters. The semi-
spherical transmission coefficient is also calculated
there for every case through integration of the indicatrix
over the solid angle within the lower hemisphere. It is
interesting that these data completely correlate with the
data for reflection. Thus, if we take a dielectric surface
(χ = 0) with T/h = 4 and n = 1.4, then the integration of
its reflection indicatrix (Table 1) over the upper hemi-
sphere with allowance made for the Fresnel reflection
coefficient by Eq. (18) gives the value of the normal
hemispherical reflection coefficient r = 0.027, which in
summing with the corresponding transmission coeffi-
cient τ = 0.982 (Table 2) yields 1.009 (that is, the data
for reflection and transmission correlate accurate to
1%, and no energy loss occurs at the interface).

The data of Table 2 clearly illustrate the beam
broadening with increasing surface roughness and
refractive index of the medium. True, in all the cases
presented, which are closest to the real cases of biolog-
ical tissues, the transmitted beam retains, to a high
degree, its initial direction, and the angular divergence
of the transmitted radiation proves not to be very high.
Nevertheless, it can influence the general solution in
RTT problems for the radiation field inside the medium
as compared to the model of a parallel external flux and
plane interface. In this case, the use of the boundary
indicatrix in the form specified by Eq. (19) as a bound-

ary condition for RTT problems can allow one to con-
sider and study this effect. 

CONCLUSIONS

Summarizing the paper, we can state that the solu-
tion of the problem of diffraction of electromagnetic
waves on a randomly rough surface both with the
boundary conditions of an ideal conductor and with the
impedance boundary conditions allows an adequate
analytical and closed description of the surface scatter-
ing of light by a rough interface. For the case of normal
illumination of the surface and coarse roughness, eval-
uative analytical equations can also be obtained for
dielectric materials and media, for example, biological
tissues, in particular, for radiation propagating deep
into the medium. In all cases, the solutions obtained can
be formulated in terms of the photometric scattering
indicatrix, which allows their direct application to com-
putational RTT problems as boundary conditions. In
addition, Eqs. (13) and (19) in combination can be used
in RTT as an alternative to the well-known Henyey–
Greenstein scattering phase function [3]. As to the basic
question formulated at the beginning of this paper
about the scattering of radiation propagating into a
medium, the calculations have shown that, in the gen-
eral case of dielectric surfaces, a light beam having
passed through a rough interface retains, to a high
degree, its initial direction, while the angular diver-
gence of the transmitted beam is not very high. 
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Table 2.  Transmission indicatrix calculated by Eq. (19) for dielectric surfaces at different observation angles and different
parameters of the surface

θ, deg

Parameters of the surface

n = 1.4 T/h = 8.0

T/h = 4.0 T/h = 8.0 T/h = 16.0 n = 1.2 n = 1.6 n = 1.8 n = 2.0

0 47.64 190.6 762.2 571.2 107.7 74.39 56.89

5 34.29 43.57 1.773 6.411 46.44 41.17 35.80

10 11.41 0.325 0.000 0.001 3.060 6.234 8.263

15 1.150 0.001 0.000 0.000 0.016 0.176 0.541

20 0.012 0.000 0.000 0.000 0.001 0.001 0.006

25 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Semispherical transmission coefficient

0.982 0.975 0.975 0.993 0.951 0.924 0.896
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APPENDIX 1

EXPLANATIONS TO EQ. (10) 
FOR DETERMINATION OF THE SOLID ANGLE

The form of Eq. (10) differs somewhat from the
classical photometric equations for determination of
the solid angle; therefore, it requires additional expla-
nations. Very often, the mathematical operations with
angles are performed so that the angles used in the
equations seem to be dimensionless. For example, in
photometry the purely mathematical definition of the
solid angle is often formulated (example from [19]) as
follows: dΩ = dA/R2, whence the parameter dΩ seems
to be dimensionless, though it is measured in steradi-
ans, because the division of square meters by square
meters gives a dimensionless value for the angle. How-
ever, even if an ordinary plane angle is considered,
everybody knows that there are different systems of
measures for plane angles: in units (fractions) of arc, in
radians (radian measure of angle), in degrees (degree
measure), and so on. These systems of measures are,
generally speaking, physical; that is, they have conver-
sion coefficients from one system to another, terminol-
ogy, and derivative parameters (for example, minutes or
seconds of arc). Therefore, physically, the angle, com-
pletely in accordance with the classical definition of
any measurable parameter [26], should be classified as
a dimensional parameter. For example, it should be
subject to measurement. Using the corresponding
instrument (protractor), we can obtain the value of a
drawn angle, in this case, in degrees. However, what is
the confusion here? Should the solid angle be consid-
ered as a dimensional or dimensionless parameter in
physical calculations? 

The general equation for any dimensional physical
parameter is formulated according to the classical the-
ory of dimension in the following way [26]:

(A1)

where G is the parameter to be measured, NG ≡ {G} is
the amount in which some reference (unit) is contained
in G, and [G] is some reference or unit. 

At the same time, from elementary plane geometry,
we know [27] that the value of the central angle in a cir-
cle is proportional to the ratio of the arc length within
this angle to the radius. Thus, taking into account
Eq. (A.1), we have the following general form of the
equation for determining an arbitrary central angle α:

(A2)

where NS and NR are the numerical values of the arc
length and the radius, respectively; [S] and [R] are the
units in which they are measured; and k0 is the coeffi-
cient of proportionality.

G NG G[ ] ,=

dim G dim G[ ] ,≡

α k0

NS S[ ]
NR R[ ]
----------------,=

In this case, it becomes clear that it is the coefficient
k0 that determines the desired system of measure for
angles in any particular problem. At k0 = 1/2π, the angle
α is measured in fractions of arc; at k0 = 1, the angle is
measured in radians; and at k0 = 180/π, it is measured
in degrees. Comparing Eqs. (A.2) and (A.1), canceling
the units of the arc length and radius ([S] = [R]), and
taking into account that Nα = NS/NR, we can definitely
assert that the coefficient of proportionality k0 in (A.2)
plays the role of a reference unit for measurement of the
angle, that is, k0 ≡ [α]. True, it cannot be used directly
to measure the angle. For this purpose, by definition,
the angle with the arc length equal to the radius is used
instead of this coefficient [27]. But this is precisely the
physical meaning of the coefficient k0. It determines the
units of this reference angle, and, in principle, it cannot
be excluded from the physical equations. It is quite
another matter that k0 ≡ [α] = 1 rad in the radian system
of measure, and this coefficient is almost always omit-
ted for brevity. However, it should always be present in
the general physical equations.

Similarly, in electrodynamics, the issue concerning
the measurement and dimensions of the material
parameters of a medium (permittivity ε and permeabil-
ity µ) and “equalization” of different units in the Max-
well equations was discussed in due course. The way
out was also found by invoking the theory of dimension
through introduction of special dimensional coeffi-
cients ε0 and µ0 for a vacuum. These coefficients also
cannot be used to measure the sought parameters, but
they form the basic dimensional system of measures,
needed for any problem of electrodynamics, and appear
in all basic equations (for more details, see [28]). 

Thus, in physical calculations, any angle should be
considered with regard to the units in which it is mea-
sured. In this case, the final equation for determination
of the angle α in the example with a circle with the des-
ignation k0 ≡ [α] ≡ α0 should be formulated as follows:

where S = NS[S] is the arc length and R = NR[R] is the
radius. With this, the final equation for the solid angle
in the form (10) should no longer raise questions, in
spite of the fact that the only established system of mea-
sures for solid angles is the radian (rather, steradian)
system with [Ω] = Ω0 = 1 sr. 
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