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Abstract Keywords 
In the majority of practical cases there exist difficulties with 
deriving an analytical closed-form solution of the classic 
radiative transport equation (RTE) in the light transport and 
scattering theory, which is widely used today in biomedical 
optics, ocean optics, atmospheric optics, etc. In our opinion, 
certain problems stem from the fact that the mathematical 
formulation of main physical processes at scattering in turbid 
media is not quite accurate. To study the problem in more 
detail, this paper once again describes and analyzes the  
photometric transport theory from the ''first pheno-
menological principles''. We show that this approach assists to 
clarify the problem in depth, as well as to obtain certain new, 
accurate and unexpected results. In this part 1 of the article, we 
consider in detail one-dimensional (1D) pure scattering prob-
lems featuring no absorption. We discuss and solve every 
main typical 1D pure scattering problem using various  
approaches. It allows us to prove that the scattering coefficient 
is not so much a real optical property of a turbid medium, but 
a parameter of the mathematical description of the problem. 
In the general case, the scattering coefficient depends on both 
optical properties of the medium and the mathematical  
approach selected. Therefore, it can vary with different ap-
proximations, which can be a source of errors in calculations 
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Introduction. The light transport and scattering theory (LT&ST) is widely used today 
in biomedical optics, ocean optics, optics of atmosphere, etc. However, it is well-
known; there are difficulties with the analytical and closed-form solution of the classic 
radiative transport equation (RTE). In the general case, it does not have the analytical 
solution. Only a number of simplified approximations exist which have it. As we have 
reported in our previous publications, we think the problem follows from the not 
quite correct formulation of main equations in LT&ST for different applications.  
In our opinion, for example, there is an error in description of the scattering 
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coefficient as a native physical property of a light scattering (turbid) medium. In 
addition, some phenomenological nature of RTE and adopted universal form of RTE 
for all practical problems simplifies and distorts our perception of the complex 
mathematical formulation of the equation(s). Therefore, a number of other problems 
still remained in a shadow. These two statements we would like to prove from the 
''first principles'' in the paper.  

We will consider only stationary, time-independent problems, because they are  
exactly the fundamentals of the phenomenological LT&ST. We work on biomedical  
optics, so examples for turbid biological tissues are more habitual to us. We will use them 
in this paper. However, our results are also applicable to other light scattering media — 
clouds, milk glasses, turbid liquids, etc. We assume a reader is familiar with the classic 
LT&ST. Therefore, there is no need to explain the basics of the theory, the basic items, and 
the existing variety of approaches to solve the direct task — Kubelka  — Munk (KM)  
approximation, diffusion equation, Monte-Carlo simulation, etc., as well as to describe the 
difference between them. Nevertheless, we should make two preliminary notes.  

1. Our note 1 concerns the photometric and phenomenological foundations of the 
theory. Fundamentals of the photometric LT&ST were developed as early as the 18th 
century. That time no one understood in a proper manner the wave nature of light,  
especially its electromagnetic nature. LT&ST was created by P. Bouger, J.H. Lambert,  
et al., as the pure ray theory — the theory describing light beam in terms of its power or 
energy as perceived brightness by human eyes. Neither diffraction nor interference were 
known that time in applications solving photometric issues. Understanding the waves, 
its phase, a power density as a square of the wave field came much later. In the original  
photometry, light beam was described as a radiant flux (beam of radiant rays with  
power) propagating and decreasing inside a continuous medium. The flux had an  
amplitude and a direction, but it was not a vector, because two fluxes were summed in 
the theory by amplitudes as scalars at intersection in a point of the medium, and not as 
vectors, unlike to electromagnetic fields. Classic RTE, which arose somewhat later, also, 
initially represented the pure photometric and phenomenological formulation of the 
problem.  

The main law of the photometry is the exponential law discovered by P. Bouger 
in the beginning of 18th century, also known as Lambert — Bouguer law, Bouguer's 
law, etc. It relates the attenuation of the radiant flux F to the absorption properties of 
the medium's substance, as well as to a distance, which the light travels inside the 
medium. Therefore, RTE is primarily based on the Bouguer's law. So, there is a sense 
to introduce it before the main issue. The simplest way to reproduce the Bouguer's 
law from the ''first principles'' is as follows. Assume that an external beam of light 
(flux) F0 enters a material sample from the left side (Fig. 1). Determine the material 
sample is not light scattering, i. e., assume the pure absorption medium. Define X as 
an axis parallel to the direction of the light beam propagation. Inside the sample, one 
can observe the radiant flux F(x) of the light as a function of the fluent coordinate x. 
Select within the sample an element Δx and define the decrement (increment) of the 
flux F(x) inside Δx, obtaining the flux F(x + Δx). 
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Fig. 1. Radiant flux F(x) inside the 
continuous material sample and a  
       formation of the flux decrement 

 

The Bouguer's law initially was proved and confirmed in experiments, but we are 
interested in a theoretical derivation of the exponential law. For this purpose, one 
should assume the difference ΔF between F(x + Δx) and F(x). For example: 

 ( ) ( ) ( ) ,F F x x F x KF x x          (1) 

where K is the absorption coefficient. Its dimension is [x]−1, i. e., the inverse dimen-
sion to a distance dimension. In the general case, K is a function of wavelength , i. e. 
K = K(). Hereinafter, for brevity and clarity, the dependence of the wavelength  are 
omitted. Equation (1) claims and defines the linear absorption of F(x) inside Δx with 
the coefficient of absorption K = const. This coefficient can be not a constant, but a 
function of a coordinate x for non-homogenous media. However, it is not a case for 
our consideration here. We consider just the simple case of the perfect homogenous, 
continuous medium, i. e. K = const. According to the classic mathematical definition 
of the derivative 

 
0

( ) lim ( ).
x

dF x F KF x
dx x 


  


  (2) 

Therefore, ignoring boundary processes at x = 0, one can obtain the following 
exponential law at K = const: 
 0( ) .KxF x F e   (3) 

In the case of RTE, the more accepted notation for K is a. As one can see, the 
main ''first principle'' in the Bouguer's law is the linear approximation in Eqs. (1) and 
(2). It tells us nothing about the inner structure as well as about the inner properties 
of the medium, with the exception of a uniformity of them along the X-axis. For ex-
ample, if the substance of the sample is a medium with discrete absorbers (Fig. 2), 
each of which absorbs the part a (a < 1) of the radiant flux F(x), and between absorb-
ers there is no absorption at all, then 

 ( ) ( ) ( )(1 ) ( ) ( )((1 ) 1),N NF F x x F x F x a F x F x a             (4) 

were N is a number of absorbers ''a'' inside Δx. Introducing the absorbers density , 
once again with the dimension [x]−1, substituting N x    into Eq. (4), and then  
Eq. (4) in Eq. (2), and revealing the infinity in Eq. (2) with the use of L'Hopital's rule, 
the limit in Eq. (2) can be evaluated as follows: 

 
0

( ) lim [ ln(1 )] ( ).
x

dF x F a F x
dx x 

 


    


  (5) 
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Fig. 2. Radiant flux F(x) and a 
formation of the flux decrement inside  
    the sample with discrete absorbers 

 

 
One can see, that defining  ln 1 ,K a    there is no way to distinguish  

between continuous and discrete absorbers media using both the photometric  
approach and measurements of F(x). Despite the stepwise nature of the function  
Eq. (4), whose derivative, formally, does not exist at points of location of the 
absorbers, i.e., at points of discontinuity of the first kind, a smooth approximating 
curve for F(x) can be found with the use of the formal phenomenological approach 
Eq. (2). Thus, there is no sense to consider models of discrete absorbers inside the 
material medium.  

2. Our note 2 concerns the correspondence between photometry and 
electromagnetism. In spite of the lack of any needs in phenomenological photometry 
to understand the wave nature of light and the Maxwell's electrodynamics, 
nevertheless, it is important today to keep in mind the relationship between these two 
approaches. Mainly, it concerns the right understanding of the absorption and 
scattering properties of different turbid media in which light propagates. Many 
articles were published on this issue, but we need to subtract only the simplest 
statements what we are going to use for our next ''first principles'' approach. It 
consists of the following.  

If consider a plane-parallel wave propagating along axis X: 

 0( )
0( , ) ,j kx tE x t E e    (6) 

where E0 is the amplitude of the electric field [V/m]; 1,j    2 /k     is the wave 
number [m−1];  is the wavelength [m]; 0 is the angular (circular) frequency; t is 
time, then the radiant flux F0 incident on the surface A at a point x is determined by 
the equation [1]  

 
2

0 ( , ) ,
2 e

AF E x t
Z

   (7) 

where A is a surface [m2]; Ze is the wave impedance of the medium [Ohm]; ( , )E x t  is 
the time-average field amplitude. It is well-known, that in a material medium the 
wave number k can be expressed through the complex refractive index n* of the me-
dium as follows:  

 0 0

0

2* ( ) ( ),k n n j n j
c c
  

      


  (8) 

where c is the speed of light in vacuum; n and   are the real and imaginary parts of n* 
respectively; 0 is the wavelength in a free space. Imaginary part  is proportional to 



S. Persheyev, D.A. Rogatkin 

82  ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5 

the specific electrical conductivity of the medium, so the case of   = 0 is the case of 
the perfect dielectric medium. Substitution Eq. (8) into Eq. (6) gives 

 
0

00

22

0( , ) .
nxj tx

E x t E e e
         (9) 

As we see, the real amplitude of the field is decreasing as the exponential function 

0

2exp x   
 inside all non-perfect dielectric media when   0. This result follows 

from fundamentals of the electromagnetic theory and has nothing to do with the  
phenomenology approach (Eqs. (1) and (2)). However, surprisingly, it gives the same 

result at 0
0

4 2 ,K k
  


 where k0 is the wave number in a free space. Therefore, we 

have an accurate understanding of the nature of light absorption and its description in 
the phenomenological photometry. However, what about the scattering? 

In basic Maxwell's electrodynamics, there is not such a special property of media 
as the scattering coefficient. Scattering of light as the process of dispersion of the  
radiation in different directions occurs with the appearance of inhomogeneities inside 
the medium and (or) of boundaries between media with different n*. In the simplest 
case of a plane boundary, when a beam of light crosses the boundary line between two 
different media with different refractive index, reflection and refraction of the beam 
can be observed. Which fraction of the beam is reflected and which one is refracted 
(transmitted), as well as directions for both the reflection and refraction are described 
well by known Fresnel equations and Snell's law. For example, a fraction of the  
incident beam that is reflected from the plane boundary is given by the reflectivity  
R (R  1). At the normal incidence 

 
2 2

2 2
( 1) .
( 1)
nR
n
 


 

  (10) 

In the common case, R is a function of , i. e., R = R() due to both n = n() and 
 = (). Once again we see the connection with the electromagnetic properties of the 
medium, in this case through the complex refractive index n*, but the conception of 
scattering is absent yet. It is absent in the basic diffraction theory, as well. Although,  
F. Grimaldi was first who carefully observed the effect of diffraction of light, and who 
also coined the term diffraction, from the Latin diffringere, exactly 'to break into 
pieces', referring to light breaking up into different directions, in electrodynamics this 
phenomenon is not described as scattering, so it does not need to involve the 
scattering coefficient. It just describes a light intensity as a function of ''scattering'' 
angle at light beam diffraction on an obstacle or on a slit when the dimension of them 
is roughly comparable to the wavelength. It can correspond to a phase function in 
LT&ST, but not more. The item of scattering appears in electrodynamics at 
introduction of a rough boundary surface [2, 3] or at consideration of mutual optical 



A New Look at Fundamentals of the Photometric Light Transport and Scattering Theory 

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5 83 

heterogeneities inside the medium (Rayleigh scattering, Mie scattering, etc. [4]).  
In these cases, the diffraction technique is also used, but together with the statistical 
formalism. Scattering cross-section as an average value over particles and (or) over 
scattering angles is usually acted as the scattering properties of such a medium. 
However, this complex computational formalism has no clear expression by any 
simple formula. Moreover, the electromagnetic scattering cross-section is not 
identical to the photometric scattering coefficient. Often, for the turbid media of 
discrete particles the scattering coefficient is defined as an integral over the solid angle 
of the differential scattering cross-section for a single particle multiplied by average 
density of particles inside the medium [5, 6]. Nevertheless, in our opinion, this 
diffraction-based approach with the use of diffraction integrals cannot be adopted as 
the ''first principle'' for the photometric LT&ST. The scattering coefficient s, as it was 
initially involved in RTE, was the original turbid medium property, which was 
introduced purely heuristically, without the use of any items of electromagnetisms. 
Therefore, there is the need to study this problem in detail. Therefore, the issue of the 
scattering coefficient formation in the pure photometric theory will be our main 
objective for the first part of the article. 

One dimensional scattering problems. Let us start with the simplest one-
dimensional (1D) scattering problem. Although, the 1D model seems to be very far 
from the reality, it is the basis of the Bouguer's law, of the Schuster — Schwartzchild 
approximation [7, 8], Kubelka — Munk (KM) approximation [5, 9], and of many 
other approaches, so the selection of such elementary model is not accidental, but is 
determined by a series of essential advantages. First, the simple 1D consideration of 
light ray absorption and scattering temporarily avoids complications with the 
definition of phase scattering functions, and therefore, allows us to concentrate on the 
phenomenological fundamentals of the scattering coefficient definition. Second, the 
1D model is the simplest approximation of RTE. Having the precise and analytical 
solutions for all basic tasks, it opens a very powerful and convenient way to compare 
these solutions with any other results based on other approaches. Third, in full 
formulation with multiple scattering and absorption, the 1D model, being known 
more as the two-flux Kubelka — Munk (KM) model, has totally accepted opinion 
about its inaccuracy, as well as about disharmony of the results based on KM model 
and results based on RTE. Especially it concerns the compliance between scattering 
and absorption coefficients in KM approximation and in the general RTE. Thus, the 
study of the basic 1D scattering problems as fundamentals of LT&ST is of great 
importance, in our opinion. 

Preliminary remarks. Our experience on publications as well as conference 
presentations shows that professionals do not always understand 1D formulation of 
the scattering problem in the same way. Therefore, there is a need to clarify our 1D 
approach in the beginning of the section. In many publications, 2D or 3D radiative 
transfer problem is considered. Usually, the formulation of the problem looks like it is 
shown in Fig. 3 in the ''flat'' (plane layer) multidimensional formulation [10]. 
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Fig. 3. Schematic ''flat'' representation 
of the radiation transfer in the  
      multidimensional formulation 

 

In the ''flat'' 2D representation, some radiance I(x, ) [Wsr−1m−2], where  is a 
polar angle (I(x, ) also called as light intensity) propagates inside the turbid medium 
at the angle  to the axis ''X''. For a narrow pencil of radiation, the radiance I(x,) and 
a radiant flux F(x) are related by the equation F(x) = I(x, )cos() [5, 11]. However, in 
the general 3D case, the flux F(x) in a channel with a large solid angle  must be cal-
culated from the radiance I(x, ) by an integration over all angles included in the 
channel: 

 1( ) ( , )cos ,
2

F x I x d   
 

  (11) 

where  is the solid angle. This approach was used, for example, by D. Yudovsky and 
L. Pilon [12]. Sometimes, using this approach, a ''1D'' RTE takes the form [13, 14]: 

 
4

( , )
cos ( ) ( , ) ( , ) ( , ) .

4
s

a s
dI x

I x p I x d
dx 

             
    (12) 

where a and s are the absorption and scattering coefficients respectively, and 
( , )p   is the scattering phase function. This approach is used since the introduction 

of the Schuster and Eddington approximations [8], and is very widespread due to the 
simplification of the coordinate system for RTE. However, this is not the pure 1D 
formulation of the problem. It is rather some 1D projection of a multidimensional 
task. It can be considered, but our objective is the pure 1D scattering problem, which 
does not contain any angles and directions of a radiance propagation different from 
the X-axis. We will consider the pure 1D turbid media, which is supposed to have  
only one line for the light transport — the axis ''X'', and there are not various angles at 
which light can travel.  

Radiation penetrates the 1D turbid medium along the axis ''X'', and while 
propagating inside the medium is absorbed by the substance of the medium and (or) 
scattered by the heterogeneities of the inner structure of the medium. In the 1D 
problem, light rays are characterized by only two parameters: by directions of 
propagation (forward and backward), and by amplitudes, i.e. by a radiant flux with 
the dimension of watt [W]. Radiant intensity [Wsr−1] can be used as the amplitude 
characteristics of the light beam, as well, but it makes a little difference in the 
reasoning and mathematical formulation of all main equations in the 1D case.  
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Our model of 1D turbid medium does not have a width, only a length (H0). 
Therefore, two fluxes only can exist inside the medium — a forward flux; we will denote 
it as F+(x), and a backward one; we will denote it as F−(x). In Figures, it is quite difficult to 
present a pure 1D scheme of light propagation, so for visibility to show propagating 
fluxes and some nuances of their scattering inside the medium we will illustrate the 
medium by a ''thin'' stick. An example of such a representation is shown in Fig. 4.  

Fig. 4. Schematic representation of the 1D medium and  
propagating fluxes inside and outside it 

 
The concept of diffraction of radiation in the 1D case has no any sense, because 

the diffraction is fundamentally a multidimensional phenomenon. In the 1D case, the 
scattering phase function is degenerated to the single opposite direction only, i. e. 
actually also does not exist (may not be taken into account). In the 1D problem, the 
only process that should be under consideration as scattering is the back-reflection of 
fluxes on ''dotted'' inhomogeneities along the X-axis. It is important to note here, that 
scattering as reflections is a discrete process on discrete inhomogeneities in principle. 
All it makes the problem to be effortless solved analytically in the closed form. The 
common approach used to solve the problem consists in formulation of differential 
equation for radiant fluxes changes at propagation inside a medium. We will use this 
technique, as well. 

Pure scattering. As the first step, we will consider the case of the pure scattering. 
This is the limit case of the absence of absorption inside the turbid medium. From the 
electromagnetic point of view, it is the case of the perfect dielectric medium. 
Imaginary part of the refractive index inside the medium  = 0. Therefore, K = 0, so 
only scattering will take place. As we have mentioned above, we suspect there is an 
inaccuracy in the definition of the scattering coefficient in LT&ST, and in 
incorporation of it into RTE. Therefore, the investigation on the scattering coefficient 
formation in a common phenomenological approach is more interesting for us. Pure 
scattering approximation give the best opportunity for the study. Thus, our task is to 
calculate a backscattered flux )0( ,BSF F  as well as a transmitted flux 0( )F F H   as 
functions of optical properties of the medium. In the case of 1D pure scattering 
media, there are only a few physical properties of the media — a length 0,H  a 
number N of inhomogeneities distributed along the X-axis inside the medium, and 
the reflectivity Ri for each i-th inhomogeneity.  

Assume all Ri = const = R. For a formation of the scattering coefficient item, it 
does not matter. Let all N inhomogeneities ir  be uniformly or some kind randomly 
distributed inside the medium. Figure 5 demonstrates the uniform distribution.  
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Fig. 5. Schematic representation of the 
1D medium with N inhomogeneities ri  
                              inside it 

 

In next figures, we will not draw black dots to indicate inhomogeneities. We will 
simply denote their coordinates by short lines crossing the X-axis. 

Single scattering approximation. The simplest case of the pure scattering model is 
the single scattering approximation (SSA). It gives the simplest solution of the 1D 
scattering problem. SSA assumes scattering (more exactly — the back reflection in the 
1D case) for the forward flus F+(x) on each inhomogeneity (decrement of F+(x) after 
passing the inhomogeneity) and the absence of scattering for the backward flux F−(x), 
i. e. it assumes the negligible re-reflection process between any two heterogeneities 
inside the medium. Figure 6 explains the decrement of the flux F+(x) and a formation 
of fluxes F−(x), )0( ,BSF F and 0( ).F F H   

Fig. 6. Formation of the backscattered and transmitted fluxes in 1D SSA 
 
It is evidently, that in this scheme:  

 0 0( ) (1 ) .NF F H F R      (13) 

Therefore, for each elementary interval Δx, the decrement ΔF+ of the propagating 
flux F+(x) will be equal: 

 ( ) ( ) ( )[(1 ) 1],xF F x x F x F x R  
            (14) 

where  [m−1] is the scatterers density inside Δx. One can see that Eq. (14) is 
mathematically identical to the Eq. (4), so, applying Eq. (5), it yields:  

  ( ) ln(1 ) ( ) ( ),dF x R F x SF x
dx


          (15) 

where by ln(1 ),S R    following KM notations, we denoted the scattering 
coefficient. To formulate the increment ΔF- of the propagating flux F−(x), we have to 
write [15]: 
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 1

1
( ) ( ) ( ) (1 ) .

N
i

i
F x F x x F x R R 
  



      
   (16) 

Note, there is the enhancement of F−(x) with the increment of Δx. The more size Δx 
and N are, the more F−(x) is formed due to the backscattering of F+(x). The sum in 
brackets is the geometric progression describing the decrement of F+(x) inside Δx. It 
can be calculated directly: 

 1

1

(1 ) 1 (1 ) 1(1 ) .
(1 ) 1

N NN
i

i

R RR
R R





    
       

   (17) 

Hence, 

 ( ) ( ) ( )[(1 ) 1],NF F x x F x F x R            (18) 

and finally: 

 ( ) ( ),dF x SF x
dx


    (19) 

that is similar to Eq. (15). Thus, we found a set of two coupled linear differential 
equations of the first-order describing the 1D pure scattering problem with the use of 
SSA: 

 

( ) ( );

( ) ( ).

dF x SF x
dx

dF x SF x
dx







 

 
  (20) 

At boundary condition x = 0: F+(0) = F0; x = H0 : F−(H0) = 0, one can solve the system 
with the output: 

 00 0( )  ;     ( ) ( ).Sx Sx SHF x F e F x F e e  
      (21) 

For professionals such a result is expectable and near trivial. Nevertheless, it is 
important to understand better all our next results. For example, we can note, that 
scattering exponential laws in Eqs. (21), similar to the Bouguer's law, is appeared here 
under the SSA as the direct consequence of SSA. Together with the obtained expres-
sion for the scattering coefficient at SSA 

 ln(1 )S R     (22) 

it forms our first main output. 
Multiple scattering approach. The case of multiple scattering is more interesting. 

For multiple scattering approach (MSA), we need to take into account all multiple 
reflections (re-reflections) between all scatterers ri inside the medium. Multiple 
scattering will lead to a phenomenon that every flux will be reduced in Δx due to the 
reflections (scattering) on boundaries of inhomogeneities, as it was at single 
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scattering; but, at the same time, it will be enhanced due to the backscattering of the 
opposite flux in Δx. Hence, the system of continuous differential equations for the 
multiple scattering case will has the form: 

 

( ) ( ) ( );

( ) ( ) ( ).

dF x SF x SF x
dx

dF x SF x SF x
dx


 


 

  

 
  (23) 

Evidential solution for the system is 

 1 2

1 3

( ) ;
( ) .

F x C x C
F x C x C




 
 

  (24) 

where C2 and C3 are constants, which should be determined using boundary 
conditions, and 1 3 2( ).C S C C   At boundary conditions x = 0: F+(0) = F0; x = H0: 
F−(H0) = 0, and we can find the fluxes as follows: 

 0 0
0 0

0 0

1 ( ) ( )
( )  ;     ( ) .

1 1
S H x S H x

F x F F x F
SH SH 

  
 

 
  (25) 

It yields for the transmitted and backscattered fluxes respectively: 

 0 0
0

1( ) ,
1

F F H F
SH  


  (26) 

and 

 0
0

0
(0) .

1BS
SHF F F

SH 


  (27) 

We do not see the exponential law here! Fluxes at multiple pure scattering do not 
obey the exponential law. This is important and well-known result, but it is not all! 
Eqs. (25)−(27) tells us nothing about S. This is a key point. We can assume 

ln(1 ),S R    like it was derived at SSA, but it will mean, evidently, that we 
assume SSA inside Δx for each fluxes at MSA, and multiple scattering occurs due to 
mutual scattering between each Δx. It is the case 1 — the quasi-multiple scattering 
process. It, probably, can be acceptable for a major number of turbid media, but here 
for the purpose of the investigation of theoretical basics of LT&ST, we have to study 
the extreme case of multiple scattering directly inside Δx. This is the case 2 — the 
perfect multiple scattering process. How can we do it? We know at least two ways. 
The more interesting way is based on the theory of Markov processes.  

An assumption of the ''photon'' migration phenomenon in LT&ST is now widely 
used in many applications, especially in statistical Monte-Carlo simulation. If this 
model is assumed, then the probability of the ''photon'' location at any point xi of the 
space can be interpreted like a probability of the state of the Markov N-section chain. 
In this case, the magnitudes of the parameter t (time) in a function of conditional 
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probability of transitions became quasi-discontinuous, and the possibility to replace 
them by the test number n (or m, l, etc.) appears. In such approach the common 
probability of the ''photon'' transition — p(n, xk|l, xi) — from xi point to xk point obeys 
the general Markov equation [16]: 

 ( , , ) ( , , ) ( , , ),   .k i k j j i
j

p n x l x p n x m x p m x l x l m n     (28) 

For the homogeneous Markov chain all probabilities of the transitions using ''s'' steps 
(s = n – l) form a matrix of probabilities: 

  ( , ) ( ),k i ikp x s x s p   (29) 

herewith, if N is a total number of chain's states which are taken into account, the sum 
of all matrix elements obeys the closing equation:  

  
1

1.
N

ik
k

p


   (30) 

The equation (29) shows that probabilities of transitions with the use of any ''s'' steps 
can be ultimately represented using only one-step probabilities. In fact, it reduces the 
solution of the Markov process problem to forming one-step matrixes and making the 
formal multiplications of them.  

Because of R  1 in our scattering model, reflectivity R can be interpreted as a 
probability of the ''photon'' transition from one state to another when it is reflected by 
a heterogeneity ri, whilst the probability of the opposite event for the ''photon'' 
(crossing the heterogeneity ri) will be equal 1 − R. For the correct usage of the Markov 
processes mathematical formalism, it is necessary to enumerate all states of ''photons''. 
Consider N heterogeneities ri inside Δx. If the simplest enumeration is chosen: before 
all ri (before Δx) there is the state number i = 1, between r1 and r2 — the state number 
i = 2, between r2 and r3 the state number i = 3, etc., then one can determine all  
one-step probabilities for the ''photon'' migration. Excluding states i = 1 and i = N +1 
(after rN), the transition from any i-th state to the state i = i + 1 or i = i − 1 has the 
probability 1 − R. The probability of staying in the state i is R (the case of back-
reflection in i-th state). If ''photon'' goes out of the Δx (i = 1 or i = N + 1), the 
probability of next changing its state falls down to zero. But for this simplest 
enumeration approach, the Markovian properties of the process are violated: the 
transition from i-th state to i + 1 or i − 1 states depends on the prehistory of the 
''photon'' traveling (was the ''photon'' moved from left to right or from right to left). 
Therefore, the problem cannot be resolved using the formalism of Markov processes. 

To overcome this difficulty, we offered to consider the much more useful 
enumerating approach. The even numbers (i = 2, 4, 6, …) we will use for the 
enumeration of the ''photon'' states between ri and out of them when ''photon'' travels 
from right to left. The uneven (odd) numbers (i = 1, 3, 5, …) we will use when a 
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''photon'' travels from left to right. Thus, initial ''photons'' penetrating Δx through the 
left boundary have the state i = 1, backscattered from Δx ''photons'' have the state i = 2 
and transmitted by Δx — the state i = 2N + 1. Strictly speaking, for this new 
enumerating scheme for every even state i, excluding i = 2, only states i − 1 or i − 2 are 
permitted for a transition with probabilities R and 1 − R respectively. For every 
uneven state i, excluding i = 2N + 1, the permitted states are i + 1 and i + 2. Any 
transitions from i = 2 or i = 2N + 1 states to any other states are not permitted (these 
transition probabilities equal to zero). After creating such a statistical scheme, one can 
start the general calculation. 

To determine a backscattered radiation inside Δx at multiple pure scattering, the 
total probability Ps(N) of a ''photon'' transition from the state i = 1 to the state i = 2 
through any s steps (s =1, 2, …, ) should be derived as a function of a number of 
heterogeneities N. It means that we must find the unlimited sum: 

 12
1

( ) ( ).N
s

s
P N p s




    (31) 

The matrix of all one-step transitions 1, for example, in the case of N = 2, is the 
matrix 2( 1)N

ik s p with the dimension of 6×6: 

 2
1

0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0

(1)   .
0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0

ik

R R

R R
R R

R R

 
 
 
 

    
 
   

p   (32) 

The probabilities of reaching the state i = 2 from the state i = 1 with the use of any 
s steps can now be calculated by multiplication of corresponding matrixes (32). For 
example, if N = 2, then the corresponding probabilities are: 

s = 1: p12(1) = R; 
s = 2: p12(2) = 0; 
s = 3: p12(3) = R(1−R)2; 
s = 4: p12(4) = 0; 
s = 5: p12(5) = R3(1−R)2; 
s = 6: p12(6) = 0; 
s = 7: p12(7) = R5(1−R)2, etc. 

Thus, the sum of them is a series: 

 2 2 3 2
12

1
(2) ( ) (1 ) (1 ) ... s

s
P p s R R R R R




         (33) 
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Starting from the second term of the series, the trivial infinitely decreasing  
geometrical progression is evident. Therefore, the limit for Eq. (33) is: 

 2(2)  .
1s

RP
R




  (34) 

Repeating calculations for N = 3, 4, 5,… It is easy to find the general probability Ps (N) 
as the solution of our task for the backscattered radiation at MSA inside Δx. It has the 
form: 

 ( )  .
1 ( 1)s

NRP N
N R


 

  (35) 

Substituting Δx into the Eq. (27) instead of H0, substituting ,N x    and equating 
(27) and (35), it is easy to derive the scattering coefficient definition at perfect MSA 
inside Δx as follows: 

 .
1

RS
R




  (36) 

The difference between Eq. (36) and Eq. (22) is noticeable. It is determined by the fac-
tor  

 (1 ) ln(1 ),R
R R

R
 

     (37) 

which is presented in Fig. 7.  
For a small magnitude of R, for 

example, for R < 0.05, the difference is 
not significant, low than 10 %. Turbid 
biological tissues, for example, have a 
quite low conductivity (imaginary part 
of the refractive index) in the waveband 
of light. R usually is not much than  
0.1, therefore the SSA can be acceptable. 
However, for biological liquids like 
blood, this difference has a considerable 
impact on results, so the multiple scattering approach should be applied. It can be 
illustrated, for example, by ratios of backscattered fluxes and transmitted fluxes, given 
by Eqs. (26) and (27) respectively, if different S given by Eq. (22) or Eq. (36) is used 
for computation. Both cases are cases of MSA due to the usage of Eqs. (26) and (27) as 
solutions, but the first one, with S given by Eq. (22), is the case of multiple scattering 
in terms of the macro-medium, but with the single scattering inside Δx (case 1), while 
the second one, with S given by Eq. (36), is the pure multiple scattering outright with 
the multiple scattering inside Δx (case 2). Figure 8 illustrates differences between 
these two cases. We have to note, that H0 affects the result in the same way like   
because of their direct product in Eqs. (26) and (27). 

 
Fig. 7. Difference between scattering 
coefficients for perfect MSA and SSA 
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Fig. 8. Differences in backscattered (a) and transmitted (b) fluxes for two cases of multiple 
scattering model: 

1 — 0H  = 2; 2 — 0H = 5; 3 — 0H = 20; 4 — 0H = 100 
 
Much stronger differences can be found if to compare solutions for MSA given 

by Eqs. (26), (27), (36) (case 2) with the similar solutions for SSA given by Eqs. (21), 
(22), i. e., with the use of both different scattering models and different scattering co-
efficients. These results are presented in Fig. 9. 

Fig. 9. Differences in backscattered (a) and transmitted (b) fluxes for SSA and the case 2  
of MSA: 

1 — R = 0.02; 2 — R = 0.04; 3 — R = 0.1; 4 — R = 0.25 
 
As one can see, there are overestimated backscattered fluxes and, therefore, 

underestimated transmitted fluxes at SSA. The multiple scattering affects like a 
translucent factor at zero absorption.  

Now, at the end of this section on pure scattering, as the first important 
conclusion we have to put the main question. We considered the same medium Fig. 5, 
the same problem of computing backscattered and transmitted fluxes, with the use of 
two different approaches: SSA and MSA. However, we obtained two different 
scattering coefficients Eqs. (22) and (36). Which one is correct, and which one is 
wrong? The medium cannot have two scattering coefficients at the same time. 
Therefore, only one answer is true: the scattering coefficient is a mathematical 
parameter of the approach used, of the approximation, not of the medium. The 
medium just has real physical parameters such as R, H0 and .  Scattering coefficient 
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S (or )s  is the parameter introduced by researchers to describe the scattering process 
as a continuous process using appropriate mathematical tools.  

Conclusion. The light transport and scattering theory (LT&ST) is widely used 
today in biomedical optics, ocean optics, optics of atmosphere, etc. However, there are 
difficulties with the analytical and closed-form solution of the classic radiative 
transport equation (RTE). In most practical cases, RTE does not have the analytical 
solution. As we have reported in our previous publications, the problem in particular 
follows from the not entirely accurate formulation of some main terms in LT&ST. In 
this part of the article, we tried to prove one of these our assumptions from the ''first 
principles'', describing systematically a number of different models of 1D pure 
scattering problems. It was shown, that the scattering coefficient is a parameter of 
both optical properties of the medium and the mathematical approach used. It 
depends not only on optical properties of the medium, but also on the approximation, 
which is applied to solve the problem. Scattering coefficient in RTE is the photometric 
parameter, which was introduced to describe the scattering process as a continuous 
process using appropriate mathematical tools. Therefore, in different tasks it can vary, 
that can be a source of errors in calculations. Indeed, more real and close to realistic 
practical problems are problems of scattering with absorption. We will consider them 
in the second part of the article.  
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